

Reflectivity of Double Porosity Model: Practical Application

Gennady Goloshubin, University of Houston

GGoloshubin@UH.EDU

UoH-12/05/2005

Background

 A combination of Biot's poroelasticity and Barenblatt's dual medium (Biot-Barenblatt model) is applied to explain the dependence of seismic reflection on reservoir fluid saturation and provides tool for imaging of high fluid mobility zones.

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

Oil-Saturated Reservoir Zone *Gulf of Mexico*

Low Frequency AVO

Conventional AVO

Data for processing are courtesy of Fairfield Industries

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

Assumptions

- The volume of highly-conductive medium (connected fractures) is small with respect to that of the "storage" medium (matrix)
- Both media are present in every representative volume. The fluid pressure in fractures may be different from that in matrix
- Darcy flow in the system of fractures; the fluid locked in the matrix blocks can be transported only through local exchange with the surrounding fractures; global Darcy flow in the matrix is negligible
- The deformation and porosity variation are due rearrangements of the grains and to compressibility of the bonds between the grains.

Dual Medium

Matrix porosity

Matrix porosity depends on deposition and provides <u>fluid</u> <u>storage</u>

Fracture porosity

Fracture porosity is controlled by fracturing and provides <u>fluid</u> <u>transport</u>

Biot-Barenblatt Model

Increased pressure

Decreased pressure

Seismic Attenuation

Attenuation is proportional to reservoir permeability

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

Reflection Model

Reflection Coefficient

$$R = R_0 + R_1 (i ω ρ_f κ/η)^{1/2}$$

- $\mathsf{R}_0 = (Z_1 Z_2) / (Z_1 + Z_2)$
- $\mathbf{R}_{1} = C(Z_{1}Z_{S2})/(Z_{1}+Z_{2})^{2}$
- Z_i impedances
- C function of rock & fluid compressibility

R₀ and **R**₁ are not dependent on hydraulic diffusivity or frequency

- i imaginary
- ω frequency
- ρ_f fluid density
- **κ** medium permeability
- η fluid viscosity

Reflection vs. Permeability

Frequency-dependent part of reflection reveals dependence on permeability

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

Attributes

Amplitude analysis

 $R = R_0 + R_1 (i ω ρ_f κ/η)^{1/2}$

- **K** calibration constant
- A observed amplitude
- Ao synthetic amplitude

 ω_0 – observed frequency

Spectral analysis

C – calibration constant

 ω – frequency

 $\partial \mathbf{S} / \partial \omega$ – first derivative

over frequency

 ρ_f - fluid density κ/η - fluid mobility

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

Reservoir Characterization

Structural map

Permeability map

Reservoir Characterization

Permeability map

Low-frequency seismic attribute map

Data of Lukoil-AIK

Reservoir Characterization

Data of Sibneft

Seismic Monitoring

Frequency-Dependent Amplitude Analysis

Sandstone Reservoir

a – Conventional Processing b – Frequency Decomposition & Analysis • - Oil • - No Oil

Data of Surgutneftegaz

Shale Reservoir

a – Conventional Processing; b – Frequency Decomposition & Analysis; • - Oil • - No Oil

Data of Surgutneftegaz

- Introduction
- Biot-Barenblatt model
- Reflectivity
- Seismic attributes
- Examples
- Development

Development tasks

Theory Development

Frequency-dependent AVO extension

Laboratory measurements

Permeability and fluid dependencies

Field data analysis

- Existing 2D and 3D seismic data
- 4D data sets

Acknowledgments

- This work has been performed at the University of Houston and University of California, Berkeley, and Lawrence Berkeley National Laboratory under Industrial Consortium and Grant No. DE-FC26-04NT15503, U.S. Department of Energy.
- The authors are thankful to Fairfield Industries, Geodata Consulting, Surgutneftegas, Sibneft, Lukoil-AIK, and TNK-BP for providing data.

Thanks for your attention

UoH-12/05/2005