

2 & 3-D Seismic Data Over Horizontally Transverse Isotropic (HTI) Fracture Model

CAGE Annual Mtg. 12/05/2005

Julius Doruelo and Fred Hilterman

Key Points:

fracture seismic response vs. S-R offset, fracture azimuth

various indicators of fracture density and azimuth

physical modeling system useful for attenuation study

<u>OUTLINE</u>

- I. Motivation
- II. Methods physical modeling system, fracture model
- III. Data CMP, Common-offset (solid vs. fracture), 3D
- IV. Findings
- V. Conclusions 8 fracture indicators
- VI. Future work

I. Motivation

 Characterize P-P reflections from HTI – fractured bondaries

 Test viability of physical modeling for fracture-porosity studies

Seal (Shale) Properties							
	Parameter	Value		Units		Step	
	P-Wave	1480		m	m/sec		-
	S-Wave	0		m	m/sec		-
	Density	1.01		gr	n/cc	+	-
Po	oisson's Ratio = 0	Porosity = 0.99					

II. Methods – Physical Modeling System

Fig. 1. Components of hardware configuration

II. Methods – HTI Fracture Model

- Plexiglas thin sheets ~ 1.6 mm thick each
- >180 thin sheets stacked side-by-side (*i.e.* HTI fracture model)
- axis of fracture model rotated about pivot for various azimuth experiments

II. Methods – 3 Sets of Seismic Experiments

Common-Midpoint 2D line Fracture vs. Solid

3D Survey over HTI Fracture at Different Azimuths

Offset = 3 depth

II. Methods – Wavelet Shaping

III. Data – 2D Lines (CMP setup)

Q1? Energy partitioning at post-critical incident angles?

III. Data – 2D Lines (CMP)

III. Data – 2D Lines (CMP)

IV. Findings (CMP over Fracture vs. Solid)

CMP over SOLID

CMP over FRACTURE

III. Data – 2D Lines (Common-Offset Gather)

Q2? Kinematic expressions of head waves in seismic section?

Q 2.1: pre- vs. post-critical angle

Q 2.2: (Fracture) at 90° azimuth but varying offset

Sub-Critical to Critical Angle

IV. Findings (2D Common-Offset Gathers)

III. Data – 3D Volumes

Q3? Differentiate out-of-plane scattering from fracture

QC

215 221 226 231

205

211

5 20

Gain 0,14E-01

CMP over SOLID

CMP over FRACTURE

IV. SUMMARY of FINDINGS:

V. FINDINGS

3D Survey over HTI Fracture at Different Azimuths

0 355+02

(8)

V. CONCLUSIONS

Indicators of fracture density and azimuth:

- 1. NO polarity reversal at far-offset data (> critical angle)
- 2. Consistent/uniform reflection amplitude at far-offset data
- 3. Delay in arrival time or complete absence of head waves
- 4. Low-frequency scattering like point diffractions at near-offset*
 * for fracture azimuths perpendicular to inlines

V. CONCLUSIONS

Indicators of fracture density and azimuth:

- 5. Undulating target horizon at far-offsets; depressed reflections where fracture density is high
- 6. Possibly, converted reverberating wave energy for fracture azimuth parrallel to inlines
- 7. 3D seismic amplitude anomalies check with new new attributes
- 8. Regular spacing between amplitude peaks-troughs in time section

V. Future Work

- 1. Quantify relationship between seismic indicators vs. fracture density and azimuth
- 2. Run the same experiments over subtle fracture model
- 3. Investigate how empirical results bear upon theory of head wave propagation in fractured (HTI) media