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ODbjectives

» Theoretical interpretation of the freguency
dependent reflection from the hydrocarbon-
bearing reservoir

» Asymptotic analysis of attenuation, reflection,
transmission coefficients in order to obtain
relatively simple expressions

“All that is simple is false and all that is complex is
useless” /| P.Valery

Investigate the role of local formation permeability:
heterogeneities



Layout

» Poroelasticity + fluid flow = Biot’s medium

» Fluid flow + local heterogeneities =
Barenblatt’s double porosity: medium

» Poroelasticity + fluid flow +
local heterogeneities = Biot-Barenblatt
double porosity: model

» Asymptotic analysis of reflection and
transmission coefficients

» Future work



Fractured roc




Local heterogeneities:
fractures and matrix

Source: Markus Tuller and Dani Or
Vadose Zone Journal 1:14-37 (2002)



Diatomite 2 micron

Matrix permeability is small due to

the complexity of the pore space
Berea sandstone geometry

Images: Liviu Tomutsa LBNL (ALS and FIB)



Double-porosity: model

6.1 — Sample of fractured reservoir Single porosity. (a) double porosity due to a system of microfissures
and joints in the blocks(b), and double porosity due to granular porosity of the blocks.

T. D. van Golf-Racht, Fundamentals of fractured reservoir engineering,
Elsevier, Amsterdam, 1982.



Double-porosity model: some; history.

» Barenblatt, G. I., Zheltov, Yu. P., and Kochina, I. N. (1960), basic
concepts in the theory of seepage of homogeneous liquids in fissured
rocks. J. Applied Mathematics and Mechanics (PMM), 24, No. 5,

pp. 1286-1303 (English Translation from Russian).
» J. E. Warren and Root, P. J.: "The Behavior of Naturally Fractured
Reservoirs,” SPE], (Sept. 1963) pp. 245-255
» S. R. Pride, J. G. Berryman. Linear dynamics of double-porosity dual-
permeability materials. I - II. Phys. Rev. E 68, (2003)
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Dual-Medium Approach

* In every REV, two types of media are presented
simultaneously:.

— Matrix: stores the fluid but only allows for fluid
exchange with the surrounding fractures

— Connected system of fractures: practically zero
storage capacity, but fluid flow due to the simple
geometry

—Two fluid pressures are associated with each point in
the medium

 The rate of fluid exchange is proportional to the
difference between the fluid pressures in the two media



Double-porosity medium
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Fluid flow and compressibility.
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Fractures: no fluid
accumulation

Matrix: fluid accumulation
exclusively due to
compression and deformation

Solid: deformation results in
porosity variation
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Acceleration of fluid-solid
system

Total stress

Two modified speeds of
sound



Harmonic wave solution:
asymptotic form
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Reflection from impermeable top of
the reservoir

Impermeanie
Reflected P-wave B

Incident P-wave ﬂ

Boundany. conditions:
Material and total
stress balance

Transmitted
Fast & Slow waves

Fluid-saturated
fractured resenvoir:




Reflection firom impermeable top of
the reservoir
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Reflection coefficient

Transmission coefficient
(fast)

Transmission coefficient
(slow)

Z,— impedance of the
Impermeable medium

Z, ,Z, —fast and slow
iImpedances of the reservoir
formation



Conclusions

» Low-freguency asymptotic analysis of elastic
wave propagdation and reflection in fractured
fluid-saturated reservoir implies:

The fast wave attenuation factor is small of
higher order relative to that of slow wave

The main freguency-dependent components ofi
reflection and fast transmission coefficients are
proportional to the sguare root of freguency

The freguency-independent component of the
slow transmission coefficient is zero



Future plans

» Analyze reflection from a finite-
thickness reservoir

» Include internal reservoir
heterogeneities

» Extend analysis to not normal incident
wave, (freguency-dependent AVO)
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