

Water-saturation estimation from seismic and rock-property trends

Zhengyun ZhouFred J. HiltermanHaitao RenMritunjay Kumar

Center for Applied Geosciences and Energy University of Houston

Objective

The objective of this research is to differentiate Fizz saturation from Gas saturation based on seismic and rock property trends.

"Fizz" ⇒ Low gas saturation
"Gas" ⇒ Economic gas saturation

Motivation

Will you drill the well at prospect location?

Amplitude map

Outline

- Seismic Field Calibration
- Rock-Property Transforms
- Application of Transforms
- Conclusions

Seismic Field Calibration

Well B

Well B is a known gas reservoir. At down-dip equivalent, we assume reservoir is wet.

Fairfield data

Well B – Resistivity and Sonic in Pay Zone

Well B – Rock Properties

Model created from well-log curves

Thin-Bed Synthetic Match With Migrated CDP Data

Fairfield data

Discovery versus Prospect AVO Signatures

Discovery

Prospect

Prospect has same AVO response as **Discovery**.

Drilling Results: Hard Shale Over Prospect

Discovery

Prospect

Outline

- Seismic Field Calibration
- Rock-Property Transforms
- Application of Transforms
- Conclusions

Assumption

For one particular hydrocarbon reservoir, the rock matrix is assumed to be the same as its down-dip equivalent. But the prospect and down-dip equivalent can have different thicknesses.

Local Rock Properties – GOM - Louisiana

Rock-Property Variations

Rock-Properties: ± 1 Standard Deviation

Rock-Property Transforms

Let's quantify these two observations

Two Observations:

1. NI(wet) – NI(gas) \approx Constant

2. Slope is proportional to NI More positive NI \Rightarrow Larger Slope More negative NI \Rightarrow Smaller slope

Miocene Rock Properties – GOM - Louisiana

50 shelf wells, 239 Miocene sand packages

- 149 hydrocarbon charged
- 90 brine filled
- 1600-6500m depths
- Measure sand and encasing shale rock properties
- Fluid substitution: Wet-, gas-, and fizz-saturated rock properties

NI for 239 Miocene sand packages

NI(Gas) = -.08 + 1.25 NI(Wet) $R^2 = 0.8$

Quantifying Local Reflectivity Transforms

Observation 1

Observation 2

Outline

- Seismic Field Calibration
- Rock-Property Transforms
- Application of Transforms
- Conclusions

Seismic Amplitude Model

Field Measurements – Amplitude Notation

Down Dip AVO

Prospect AVO

Transforming Seismic Amplitude into NI

Rock property
measurements of b0 and b1 $RC(30^{\circ})_{WET} = -.04 + .42 \text{ NI}_{WET}$
 $RC(30^{\circ})_{FIZZ} = -.09 + .38 \text{ NI}_{FIZZ}$
 $RC(30^{\circ})_{GAS} = -.12 + .38 \text{ NI}_{GAS}$

Estimation in Wet Area

Estimation in Hydrocarbon Area

Estimation in Hydrocarbon Area

Outline

- Seismic Field Calibration
- Rock-Property Transforms
- Application of Transforms
- Conclusions

Conclusions

- Fizz and gas can have the same AVO responses, but down-dip water-saturated AVO response discriminates fizz from gas reservoirs.
- NI of wet, gas and fizz saturations vary with changing rock properties. However, the values of $(NI_{WET} NI_{GAS})$ and of $(NI_{WET} NI_{FIZZ})$ remain fairly stable. In the *Pore-Fluid Transforms*, linear relationships are used to predict NI_{GAS} and NI_{FIZZ} from NI_{WET} .
- Near and far amplitude maps combined with *Slope Transforms* estimate the Reflection Coefficients for various pore fluids. Water saturation can be determined by comparing the NI values predicted in wet area and in prospect area.

Needs field verification !

Acknowledgements

RQL sponsors

Permission to show data: Geophysical Development Corporation – Petrophysical Fairfield - Seismic

PetroSeismic Inc – Development of TIPS software

Rocky Roden – Assistance in preparing seismic data through SMT AVOPAK.

Thank you for your attention!