
PROCEEDINGS, Rainbow in the Earth – 2nd International Workshop 2005 
Lawrence Berkeley National Laboratory, Berkeley, California, August 17-18, 2005 

 - 1 - 

LOW-FREQUENCY ASYMPTOTIC ANALYSIS OF REFLECTION COEFFICIENT  
FROM A HYDROCARBON RESERVOIR 

 
Silin, D. B., Goloshubin, G. M., Korneev, V. A., and Patzek, T. W. 

 
University of California, Berkeley 
Berkeley, CA, 94720, U.S.A. 

University of Houston 
Lawrence Berkeley National Laboratory 

e-mail: silin@patzek.berkeley.edu 
 

ABSTRACT 

Asymptotic low-frequency analysis of the planar p-
wave reflection coefficient from a hydrocarbon 
reservoir shows that the frequency-dependent 
component is proportional to the square root of the 
frequency multiplied by the kinematic mobility of the 
reservoir fluid.  The latter is defined as the product of 
the fluid mobility and density.  This asymptotic 
scaling rule holds both for conventional poroelastic 
media and reservoirs with dual permeability. 
Frequency-dependent reservoir imaging has been 
successfully applied both in on-shore and off-shore 
environments.  As the obtained asymptotic scaling 
links reservoir rock and fluid properties with seismic 
attributes, it has a great potential both for 
hydrocarbon exploration and reservoir 
characterization in produced oil fields. 

INRODUCTION 

It has been recognized that seismic wave propagation 
in fluid-saturated porous media is strongly affected 
by the fluid properties and rock permeability.  There 
are numerous examples of successful oil and gas 
reservoir imaging based on frequency-dependent 
analysis of reflected signal, (Goloshubin et al., 1998-
2005, Korneev et al., 2004ab).  An example of 
frequency-dependent seismic imaging is presented in 
Figure 1. The yellow spots correspond to the most 
permeable parts of an off-shore reservoir. 
Conventional analysis (not presented here) has not 
produced any noticeable contrast.  
The dependence of the attenuation and reflection 
coefficients on the frequency of the signal suggests 
that the presence of viscous pore fluid requires use of 
poroelastic theory for adequate interpretation of the 
results.  The fundamental theory of elastic wave 
propagation in a fluid-saturated porous rock has been 
developed by Biot (1956ab).  Wave propagation in 
rocks with two scales of permeability was analyzed 
by Pride and Berryman (2003ab).  Evaluation of the 
reflection coefficient from gas-water contact has been 
presented by Dutta and Ode (1983).   

 

Figure 1. Imaging of the hydrocarbon-
bearing zones in South Marsh Island, Gulf of Mexico, 
based on frequency-dependent analysis of 3D seismic 
data.  Conventional AVO analysis did not detect the 
reservoir. Data are courtesy of Fairfield Industries. 

In this presentation, we develop asymptotic analysis 
of the reflection coefficient in the low-frequency 
range of seismic spectrum.  For this purpose, we 
obtain the governing equations in a dimensionless 

form and use 
f

i
ρ κω

ε
η

=  as the small dimensionless 

parameter in our asymptotic analysis. Here 
f

ρ  is the 

density of reservoir fluid, κ  is the reservoir rock 
permeability, η  is the fluid viscosity, ω  is the 

angular frequency of the signal and i is the square 
root of -1.   
In the following Sections, we present asymptotic 
analysis of a harmonic-wave solution to the 
governing equations and obtain a simple expression 
of the planar p-wave reflection coefficient. Although 
this analysis and the conclusions hold both for 
conventional (Silin et al., 2005) and dual 
(Goloshubin and Silin, 2005) porous media, here we 
focus on the former case due to the limited space. 
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Note that our dual-medium treatment is based on the 
model by Barenblatt et al. (1960) routinely used in 
reservoir engineering. 

THE MODEL 

Governing Equations 

Denote by u the skeleton displacement, W the Darcy 
fluid velocity, and p the fluid pressure.  Then, from 
the basic principles of filtration theory and linear 
elasticity, one obtains 
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Here t is time and x is the coordinate aligned with 

wave propagation; ργ  is the ratio of the fluid density 

f
ρ  and the saturated-medium bulk density

b
ρ ; 

f

D
κ

φηβ
=  is the hydraulic diffusivity, where φ  is 

the reservoir rock porosity; and 
f

β  is the adiabatic 

fluid compressibility.  The characteristic velocities vb 
and vf  are defined as 
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bv
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and 
f

P pφβ= . It is assumed that the grain 

compressibility is negligible with respect to that of 
the drained skeleton, which is denoted by β . The 

first equation is the momentum balance based on 
elastic and effective stresses, the second one 
describes fluid flow in the reference system attached 
to the skeleton, and the last one is the fluid mass 
conservation.  Note that the second equation involves 
relaxation time τ , which comes from a dynamic 

version of Darcy’s law (Alishaev and 
Mirzadzhanzadeh, 1975).  The relationship of 
equations (1) to classical Biot’s model, as well as the 
relationship between the relaxation time and Biot’s 
tortuosity parameter, is discussed in more detail in 
(Silin et al. 2005). Both velocities vf and vb are 
different from the speed of sound in the drained 
skeleton or bulk fluid.  However, they are convenient 
parameters for the asymptotic analysis of attenuation 
and reflection. 

Asymptotic Harmonic Wave Solution 

We seek a solution to system of equations (1) in the 
form of harmonic plane wave 
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where k is the complex wave number yet to be 
determined. For asymptotic analysis, the following 
dimensionless variables are introduced 
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Then, equations (1) take on the following 
dimensionless form 
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Where 
f

v

φβ

β
γ =  and 
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ητ
θ

ρ κ
= . In this study, we 

assume that ( )1Oθ = . We seek an asymptotic 

solution as power series with respect to the small 

parameter ε : 
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Two solutions corresponding to the slow and fast 
waves are 
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Where 
( )
1

1
vρ

δ
γ γ

=
+

. Note that all coefficients in 

Equations (7)-(8) are real. Equations (4) and (7)-(8), 
in particular, imply that the slow wave propagates in 
the fluid, whereas the fast wave does not involve the 
fluid motion.  In addition, the first asymptotic terms 
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of the wave number and attenuation factor of the 
slow wave are equal to each other and asymptotically 

proportional to ω : 
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For the fast wave, the wave number and attenuation 
factor asymptotic expressions are 
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Thus, the slow wave attenuation factor, as a function 
of the frequency, is of higher order than that of the 
fast wave. 

REFLECTION COEFFICIENT 

Consider a plane interface between two media: one is 
an overburden formation and the other a fluid-
saturated reservoir. The overburden formation is 

modeled as an elastic medium with the density 
1
ρ  

and compressibility 
1
β . The speed of sound in this 

medium is defined as ( ) 1

1 1 1
v ρ β

−
= . For the 

reservoir, we adopt the poroelastic model. An 
incident wave arriving at the interface between the 
two media is partially reflected and partially 
transmitted. Asymptotic analysis performed in the 
previous section can now be extended to investigate 
the dependence of the reflection coefficient on 
frequency. The transmitted wave has two 
components: the slow and the fast one. We will 
denote by u1 and u2 the skeleton displacement in the 
overburden and the reservoir rock, respectively. Mass 
and momentum conservation at the interface lead to 
the following three boundary conditions: 
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Let U0 be the amplitude of the incident wave.  Then 
the total displacement in the overburden is 
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ω ω− ++ , where R is the reflection 

coefficient. In the reservoir, the slow and fast wave 
have the amplitudes T

S
U0 and T

F
U0, respectively. 

Here T
S
 and T

F
 are the transmission coefficients for 

the slow and fast component of the transmitted wave. 
Applying Equations (4), (6)-(10), for the Darcy 
velocity and the fluid pressure amplitudes, one 
obtains 
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Note that the assumption ( )1Oθ =  puts the 

relaxation time (equivalently, the Biot’s tortuosity 
factor) into the higher-order terms only. Substitution 
of Equations (12)-(13) into the boundary conditions 
(11) suggests that the asymptotic expansions of the 
reflection and transmission coefficients have the 
following forms 
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Further analysis yields 
0

0
S

T = . Thus, the slow-wave 

transmission coefficient only includes higher-order 
terms. For the frequency-independent component of 
the reflection coefficient R0, one obtains 
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where 
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=  is the acoustic impedance of the 

overburden formation and 
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is the “mixed” acoustic impedance of the fluid-
saturated reservoir. For the second term, one obtains 
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For a dual-medium reservoir model, the asymptotic 
analysis of the reflection coefficient leads to a 
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formula qualitatively similar to the one in Equation 
(14), but with different expressions for the 
coefficients R0 and R1 (Goloshubin and Silin, 2005). 
The nature of this difference is the decoupling of the 
permeability and porosity in a dual medium. 

CONCLUSIONS 

Low-frequency, frequency-dependent analysis of 
seismic reflection leads to high-quality reservoir 
images. The fluid-saturated regions are accurately 
delineated even when standard analysis produces no 
results.   
Asymptotic analysis of the reflection coefficient for 
plane p-wave shows that the frequency-dependent 
component is proportional to the square root of the 
product of signal frequency, and the reservoir fluid 
density and mobility. The reflection coefficient is a 
complex number that indicates additional phase shift. 
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