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Abstract. Reflection of a seismic wave from a plane interface between two elastic media11
does not depend on the frequency. If one of the media is poroelastic and fluid-saturated,12
then the reflection becomes frequency-dependent. This paper presents a low-frequency13
asymptotic formula for the reflection of seismic plane p-wave from a fluid-saturated14
porous medium. The obtained asymptotic scaling of the frequency-dependent component15
of the reflection coefficient shows that it is asymptotically proportional to the square root16
of the product of the reservoir fluid mobility and the frequency of the signal. The depen-17
dence of this scaling on the dynamic Darcy’s low relaxation time is investigated as well.18
Derivation of the main equations of the theory of poroelasticity from the dynamic filtra-19
tion theory reveals that this relaxation time is proportional to Biot’s tortuosity parameter.20

Key words: low-frequency signal, Darcy’s law, seismic reflection.21

1. Introduction22

When a seismic wave interacts with a boundary between elastic and23
fluid-saturated media, some energy of the wave is reflected and the rest24
is transmitted or dissipated. It is well-known that both the transmis-25
sion and reflection coefficients from a fluid-saturated porous medium are26
functions of frequency (Geertsma and Smit, 1961; Dutta and Ode, 1983;27
Santos et al., 1992; Denneman et al., 2002). Recently, low-frequency sig-28
nals were successfully used in obtaining high-resolution images of oil and29
gas reservoirs (Goloshubin and Bakulin, 1998; Goloshubin and Korneev,30
2000; Castagna et al., 2003) and in monitoring underground gas stor-31
age (Korneev et al., 2004). Therefore, understanding the behavior of the32
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2 D. B. SILIN ET AL.

reflection coefficient at the low-frequency end of the seismic spectrum is of33
special importance.34

The main objective of this paper is to obtain an asymptotic repre-35
sentation of the reflection of seismic signal from a fluid-saturated porous36
medium in the low-frequency domain. More specifically, we derive a sim-37
ple formula, where the frequency-dependent component of the reflection38
coefficient is proportional to the square root of the product of frequency39
of the signal and the mobility of the fluid in the reservoir. This scaling40
can be different depending on the magnitude of the tortuosity factor. Since41
the latter is proportional to dynamic Darcy’s law relaxation time, it can be42
evaluated from a flow experiment or using microscopic-scale flow model-43
ing (Patzek, 2001).44

We derive wave propagation equations from the basic principles of the45
theory of filtration. This is done, in particular, to verify that both the fil-46
tration and poroelasticity theories are based on a common foundation. We47
retain the equations needed in the asymptotic analysis that follows, skip-48
ping details where the calculations are similar to those in the classical49
works by Biot (1956a,b, 1962).50

Fluid flow in an elastic porous medium is the subject of both fil-51
tration theory (Muskat, 1937; Polubarinova-Kochina, 1962; Bear, 1972;52
Barenblatt et al., 1990) and the theory of poroelasticity (Frenkel, 1944;53
Gassmann, 1951; Biot, 1956a,b, 1962; Wang, 2000). The filtration theory54
usually assumes steady-state or transient processes where the macroscopic55
transition times are significantly longer than the transition times of the56
local microscopic processes. The poroelasticity theory includes a model of57
acoustic wave propagation in fluid-saturated elastic media, where the mac-58
roscopic transition times are short and, therefore, the concept of steady-59
state fluid flow may be inapplicable.60

To obtain a system of equations characterizing fluid–solid interac-61
tions in a macroscopically homogeneous elastic fluid-saturated porous62
medium, we adopt relaxation filtration (Alishaev and Mirzadzhanzadeh,63
1975; Molokovich et al., 1980; Molokovich, 1987), which employs a relax-64
ation time to account for the inertial and non-equilibrium effects in fluid65
flow, thus extending the classical Darcy’s law (Darcy, 1856; Hubbert, 1940,66
1956). Originally, Darcy’s law was formulated for steady-state flow (Darcy,67
1856). It is recognized that non-equilibrium effects are important in two-68
phase flow (Barenblatt, 1971; Barenblatt and Vinnichenko, 1980), (see69
also Silin and Patzek, 2004). However, due to local heterogeneities, they are70
also important in single-phase flow.71

Further, it is demonstrated in Sections 2 and 3 that under different72
assumptions, the equations obtained here can be transformed either into73
Biot’s wave equations (Biot, 1956a,b, 1962), or into the elastic pressure74
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diffusion equation (Muskat, 1937; Matthews and Russell, 1967; Barenblatt75
et al., 1990).76

In the original Biot’s works (1956a,b, 1962), the wave equations of poro-77
elasticity were derived from the Hamiltonian least-action principle. In order78
to close the system, an introduction of a parameter having dimension of79
density was needed. This parameter is related to a dimensionless tortuosity80
factor characterizing the complexity of the pore space geometry in natural81
rocks. There are several definitions of tortuosity in the literature, (see e.g.,82
Bear, 1972). In Biot’s derivation, the tortuosity factor statistically charac-83
terizes the heterogeneity of the local fluid velocity field (Biot, 1962). The84
way this tortuosity factor and the above-mentioned relaxation time enter85
the equations leads to the conclusion that they are linearly related to each86
other. The magnitude of the relaxation time and, hence, the value of the87
tortuosity, affects the way the reflection coefficient depends on frequency.88
Since the magnitude of the tortuosity in Biot’s equations ranges, in general,89
between one and infinity (Molotkov, 1999), it is very important to know90
the tortuosity factors for different types of rock.91

Over the last fifty years, a significant effort has been spent on the investiga-92
tions of attenuation of Biot’s waves, (see e.g., Pride and Berryman, 2003a,b)93
and the references therein. It has been noticed that there must be a relation94
between the dependence of the attenuation on the wave frequency and the95
permeability of the reservoir (Pride et al., 2003). In many cases, the attenua-96
tion coefficient can be obtained in an explicit, but quite cumbersome, form.97
Computation of the reflection coefficient is even more complex because it98
additionally requires inversion of a matrix. However, for a robust reservoir99
imaging procedure, a simple asymptotic expression is needed.100

Low-frequency limit of Biot’s theory was studied using homogenization101
technique (Auriault and Royer, 2002). In that work, the authors conclude102
that for a variety of media saturated with slightly compressible fluids, the103
distinction between Biot’s (1956a) and Gassman’s (1951) theories dimin-104
ishes as the frequency tends to zero.105

In this study, we obtain a simple asymptotic expression where the role106
of the reservoir fluid mobility is transparent. We focus on the simplest case107
of normal reflection of a p-wave.108

In addition, we assume that rock grains are practically incompressible,109
so that all deformations of the rock and the pore space are due to the rear-110
rangements of the grains. The scaling relationship obtained in Section 6111
below has been successfully applied for imaging of oil reservoir productiv-112
ity (Korneev et al., 2004).113

The layout of the paper is as follows. In Section 2, the main equa-114
tions of the model are derived from the principles of filtration theory. In115
Section 3, the obtained relationships are compared with Biot’s equations116
and the pressure diffusion model. In Section 4, we define a dimensionless117
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small parameter for the asymptotic analysis of the known harmonic-wave118
solution to the equations of poroelasticity. In Section 5, the boundary con-119
ditions for the reflection problem are formulated. An asymptotic expression120
for the reflection coefficient with respect to the small parameters introduced121
in Section 4 is obtained in Section 6. In Section 7, we elaborate on how the122
relaxation time and tortuosity affect the asymptotic analysis.123

2. Fluid-Solid Skeleton Interaction Equations124

Consider a homogeneous porous medium M saturated with a viscous125
fluid. The grains of the solid skeleton are displaced by an elastic wave.126
It is assumed that a plane p-wave is propagating along the x-axis of127
a fixed Cartesian coordinate system. Thus, after averaging over a plane128
orthogonal to x, the only non-zero component of the displacement is129
the x-component, and the mean displacement is one-dimensional. Due to130
the skeleton deformation, the grains are rearranged. We assume that the131
rearrangement occurs through elastic deformations of the cement bonds132
between the grains. Such an assumption is natural in many situations con-133
sidered in hydrology and is quite common in the geophysical literature as134
well, (see, e.g., Denneman et al., 2002).135

In general, deformations result in energy dissipation. In this paper, for136
simplicity, it is assumed that these energy losses are much smaller than the137
losses through viscous friction in the cross-flow of the reservoir fluid. Fur-138
ther, we assume that the rock is “clean”, so that the total mass and volume139
of the bonds are small relative to those of the grains. Thus, for the bulk140
density of the “dry” skeleton � we have141

�= (1−φ)�g, (1)142

where �g is the density of the grains and φ is the porosity. If we neglect the143
microscopic rotational motions of the grains, the mean density of momen-144
tum of the drained skeleton is given by145

�
∂u

∂t
= (1−φ)�g

∂u

∂t
, (2)146

where u is the mean displacement of the skeleton grains in the x-direction147
and t denotes time.148

The skeleton deformations change the stress field. We consider only149
small variations of parameters near a reference configuration, where all150
forces are at equilibrium. It is natural to assume that the shear stresses are151
uniformly distributed over directions orthogonal to x. In general, even uni-152
formly distributed shear stress influences the rearrangement of the skeleton.153
However, the assumption of stiff grains and small-volume bonds allows us154
to neglect this influence. The x-component, σx , of the stress implied by a155
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displacement of the solid skeleton, u, at a constant fluid pressure, that is156
similar to effective stress (Terzaghi and Peck, 1948), can be measured by157
the elastic forces acting on a unit (bulk) area in a plane orthogonal to x.158
Linear elasticity hypothesis suggests that for small displacements, the stress159
σx and the displacement u are linearly related:160

σx = 1
β

∂u

∂x
. (3)

161

Here β =1/K is the drained bulk compressibility, or the inverse of the bulk162
modulus K. We retain the subscript x in Equation (3) just to emphasize163
that here we focus on a one-dimensional case only.164

The motion of the reservoir fluid can be characterized by the superficial165
or Darcy velocity W measured relative to the skeleton. This means, that if166
we imagine a small surface element moving along with the local displace-167
ment of the grains, then the volumetric fluid flux through this surface is168
equal to the projection of W on the unit normal vector to the surface. The169
average velocity vf of the fluid particles relative to the skeleton is related to170
the Darcy velocity by equation171

φvf =W. (4)172

The total fluid pressure-related force acting on the solid skeleton is equal173
to −(∂p/∂x) (Polubarinova-Kochina, 1962; Wang, 2000). A small volume174
of the medium, δV , contains �δV mass of rock material and φ�fδV mass175
of fluid. Here �f is the density of the fluid. Hence, the momentum of mov-176
ing fluid per unit bulk volume is177

φ�f

(
∂u

∂t
+vf

)
=φ�f

∂u

∂t
+�fW. (5)

178

Thus, the momentum balance per unit bulk volume is179

�b
∂2u

∂t2
+�f

∂W

∂t
= 1

β

∂2u

∂x2
− ∂p

∂x
, (6)

180

where �b is the bulk density of the fluid-saturated medium:181

�b = (1−φ)�g +φ�f =�+φ�f . (7)182

Now, consider the motion of the fluid. According to Darcy’s law, at steady-183
state conditions184

W =−�f
κ

η

∂	

∂x
, (8)

185

where κ is the permeability of the medium, η is the viscosity of the fluid186
and 	 is the flow potential (Hubbert, 1940, 1956). We consider only small187
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perturbations near an equilibrium configuration and the Darcy velocity188
W is measured relative to the porous medium. Hence, the differential of189
potential 	 is amended with a term characterizing additional pressure drop190
due to the accelerated motion of the skeleton191

d	= dp

�f
+ ∂2u

∂t2
dx. (9)

192

Darcy’s law (8) is for steady-state flow. If flow is transient, for example, due193
to abrupt changes in the pressure field, Equation (8) may need to be modi-194
fied in order to account for the inertial and relaxation effects. To derive the195
respective equation, we use an argument similar to that in Barenblatt and196
Vinnichenko (1980). As the pressure gradient changes, the local redistribu-197
tion of the pressure field does not occur instantaneously because it includes198
microscopic fluid flow along and between the pores. Thus, the gradient of199
flow potential determines some combination of Darcy velocity and “Darcy200
acceleration”201




(
W,τ

∂W

∂t

)
=−�f

κ

η

∂	

∂x
. (10)

202

Clearly, 
(W,0)=W . At low-frequency limit, the acceleration component203
is small, hence a linearization with respect to the second parameter yields204

W + τ
∂W

∂t
=−�f

κ

η

∂	

∂x
. (11)

205

Here τ is a characteristic redistribution time.206
Such a modification of Darcy’s law was proposed by Alishaev (1974),207

Alishaev and Mirzadzhanzadeh (1975) using different assumptions. In mul-208
tiphase flow, similar considerations were used to model non-equilibrium209
effects at the front of water–oil displacement and spontaneous imbibi-210
tion (Barenblatt, 1971; Barenblatt and Vinnichenko, 1980). Some estimates211
of the relaxation time, based on an interpretation of experiments, were212
reported in Molokovich et al. (1980), Molokovich (1987), and Dinariev and213
Nikolaev (1990). Apparently, the relaxation time is a function of the pore214
space geometry, fluid viscosity η, and compressibility βf . Dimensional anal-215
ysis then suggests that τ = ηβfF(κ/L2), where L is the characteristic size216
of an elementary representative volume of the medium, and F is some217
dimensionless function. Time τ is apparently related to the tortuosity fac-218
tor (Biot, 1962). This relationship is discussed in more detail below.219

Summing up, we arrive at the following equation characterizing the220
dynamics of fluid flow221

W + τ
∂W

∂t
=−κ

η

∂p

∂x
−�f

κ

η

∂2u

∂t2
. (12)

222
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The assumption that both skeleton displacement u and Darcy velocity W223
are just small perturbations near some equilibrium values is also applied224
to the fluid pressure p. Only these small variations have non-zero deriva-225
tives. Therefore, we retain only the terms, which are linear with respect to226
small perturbations. A system of momentum balance equations accounting227
for convective momentum transport in terms of microscopic fluid velocities228
is presented in Nikolaevskii (1996). In Equations (6) and (12), Darcy veloc-229
ity is used in conjunction with dynamic version of Darcy’s low.230

The mass balances for the fluid and the solid skeleton are231

∂(�fφ)

∂t
=−

∂

(
�fW +φ�f

∂u

∂t

)
∂x

, (13)232

∂�

∂t
=− ∂

∂x

(
�

∂u

∂t

)
. (14)

233

For the fluid, we apply the isothermal compressibility law (Landau and234
Lifschitz, 1959), that is, for small fluid pressure perturbation235

d�f

�f
=βf dp. (15)

236

Hence, Equation (13) can be rewritten as237

∂φ

∂t
+φβf

∂p

∂t
=−∂W

∂x
−φ

∂2u

∂x∂t
−W

∂�f

∂x
− 1

�f

∂

∂x
(φ�f )

∂u

∂t
. (16)

238

Since the parameter variations are small, and only the perturbed compo-239
nents have non-zero derivatives, the last two terms in Equation (16) are of240
higher order and can be neglected.241

With ρ = (1−φ)ρg, Equation (14) takes on the form242

−∂φ

∂t
+ (1−φ)

1
�g

∂�g

∂t
=− 1

�g
(1−φ)

∂�g

∂x

∂u

∂t
+ ∂φ

∂x

∂u

∂t
− (1−φ)

∂2u

∂x ∂t
. (17)

243

The smallness of perturbations implies that the first two terms on the right-244
hand side of the last equation can be dropped. Further on, the perturba-245
tion of grain density is a linear function of the perturbations of stress and246
fluid pressure, that is247

1
�g

d�g =βgsdσx +βgf dp, (18)
248

where βgs and βgf are the respective compressibility coefficients. Thus,249
Equation (17) can be written as250

∂φ

∂t
= (1−φ)βgf

∂p

∂t
+ (1−φ)

(
1+ βgs

β

)
∂2u

∂x ∂t
. (19)

251
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A combination of this last result with Equation (16) leads to the following252
relationship253 (

1+ (1−φ)
βgs

β

)
∂2u

∂x ∂t
+ (φβf + (1−φ)βgf )

∂p

∂t
=−∂W

∂x
. (20)

254

The compressibility is much smaller than the compressibility of the fluid or255
the skeleton:256

βgf �βf and βgs �β. (21)257

This means that bulk deformation occurs only through the porosity pertur-258
bations. Thus, Equation (20) can be further reduced to259

∂2u

∂x∂t
+φβf

∂p

∂t
=−∂W

∂x
. (22)260

Equation (22) states that the amount of fluid volume packed into a unit261
bulk volume per unit time is equal to minus the divergence of the absolute262
fluid velocity. This fluid redistribution occurs due to fluid compression and263
porosity variation. Note that Equations (20) and (22) are mathematically264
similar. Below, we use the more general mass balance equation (20) unless265
it exceedingly complicates the calculations.266

To summarize, we have obtained a closed system of three Equations (6),267
(12), and (20) with three unknown functions of t and x: the skeleton dis-268
placement u, the fluid pressure p, and the Darcy velocity W .269

3. Relationship to Biot’s Poroelasticity and Pressure Diffusion Equations270

In this section, we demonstrate that under the assumptions formulated271
in Section 2 Equations (6), (12), and (20) can be reduced to the system272
of equations obtained by Biot (1956a, 1962), (see also Dutta and Ode,273
1979). At the same time, neglecting the inertial terms in these equations,274
leads to the pressure diffusion equation used in hydrology and petroleum275
engineering for well test analysis, (see Theis, 1935; Jacob, 1940) or books276
(Matthews and Russell, 1967; Barenblatt et al., 1990).277

To recover Biot’s poroelasticity equations, the assumption of grain278
incompressibility, Equations (21), is applied. For small oscillatory deforma-279
tions of the skeleton and fluctuations of the fluid flow, a “superficial” dis-280
placement w of the fluid relative to the skeleton can be introduced, so that281

W = ∂w

∂t
. (23)282

Note that inasmuch as w is related by Equation (23) to the Darcy velocity283
of the fluid, it is different from the average microscopic fluid displacement.284
Substitution of (23) into Equation (22) yields
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∂2u

∂x ∂t
+φβf

∂p

∂t
=− ∂2w

∂t ∂x
. (24)285

By integration in t and differentiation in x, we obtain286

∂p

∂x
=− 1

φβf

∂2u

∂x2
− 1

φβf

∂2w

∂x2
. (25)

287

In this derivation, we have used the assumption of the smallness of the288
rock–fluid system oscillations near an equilibrium configuration. Otherwise,289
due to the integration, Equation (25) should include an unknown function290
of x. Substitution of Equation (23) and the result (25) in Equations (6) and291
(12) yields:292

�b
∂2u

∂t2
+�f

∂2w

∂t2
=
(

1
β

+ 1
φβf

)
∂2u

∂x2
+ 1

φβf

∂2w

∂x2
, (26)

293

�f
∂2u

∂t2
+ τ

η

κ

∂2w

∂t2
= 1

φβf

∂2u

∂x2
+ 1

φβf

∂2w

∂x2
− η

κ

∂w

∂t
. (27)

294

Under the assumptions formulated above, Equations (26) and (27) are295
equivalent to the Biot system of equations (8.34) (Biot, 1962):296

∂2

∂t2
(�bu+�fw)= ∂

∂x

(
A11

∂u

∂x
+M11

∂w

∂x

)
,

297
∂2

∂t2
(�fu+mw)= ∂

∂x

(
M11

∂u

∂x
+M

∂w

∂x

)
− η

κ

∂w

∂t
.

298

Comparing the individual terms, we can establish a relationship between299
the relaxation time and the tortuosity factor. Namely, the relaxation time300
τ is related to the dynamic coupling coefficient m (Biot, 1962) through301
the inverse mobility ratio η/κ. The dynamic coupling coefficient is often302
expressed through the tortuosity factor T : m=T �f/φ. Hence, for the tor-303
tuosity and relaxation time, we obtain the following relationship:304

T = τ
ηφ

κ�f
or τ =T

κ�f

ηφ
. (28)

305

Comparison of the elastic coefficients reveals that under the assumption of306
isotropic porous medium and incompressible grains (the Biot–Willis coeffi-307
cient α =K/H ≈ 1, and Ku =K +Kf/φ), the Biot coefficients are constant308
and equal to309

A11 =Ku ≈ 1
β

+ 1
φβf

and M11 =M =KuB ≈ 1
φβf

, (29)
310

where Ku is the undrained bulk modulus, and B = R/H is Skempton’s311
coefficient, 1/H being the poroelastic expansion coefficient, and 1/R the312
unconstrained specific storage coefficient.313
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For derivation of the pressure diffusion equation, we assume that the314
characteristic time tD of the process is large in comparison with the relax-315
ation time τ and the displacements of the skeleton are much smaller then316
the characteristic length scale of the process L:317

tD � τ and u�L. (30)318

Under this assumption, the second-order time derivatives of displacement319
u and time derivatives of Darcy velocity W in Equations (6) and (12) can320
be dropped:321

∂p

∂x
= 1

β

∂2u

∂x2
, (31)

322

W =−κ

η

∂p

∂x
. (32)

323

By integrating Equation (31) in x and differentiating in t , we obtain324

∂2u

∂t∂x
=β

∂p

∂t
. (33)325

Formally, the integration with respect to x is defined up to a function of326
time, which is constant due to the constant pressure boundary condition at327
infinity. This constant is later cancelled by the differentiation with respect328
to t . Finally, by a substitution of Equations (32) and (33) into (22), we329
obtain330

φ

(
β

φ +βf

)
∂p

∂t
= κ

η

∂2p

∂x2
. (34)

331

This last equation is the pressure diffusion equation routinely used in well332
test analysis (Matthews and Russell, 1967; Barenblatt et al., 1990).333

4. Plane Compressional Wave: An Asymptotic Solution334

In this Section, we obtain the low-frequency asymptotic expressions for335
p-waves in fluid-saturated poroelastic media. These results are used in Sec-336
tion 6 in asymptotic analysis of the reflection coefficient.337

To transform the system of Equations (6), (12), and (20) obtained in338
Section 2, we introduce the dimensionless pressure339

P =φβfp (35)340

and the hydraulic diffusivity
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D = κ

φβfη
. (36)

341

Dividing Equation 6 by �b and putting342

v2
b = 1

β�b
and v2

f = 1
φβf�b

, (37)
343

we obtain344

∂2u

∂t2
+ �f

�f

∂W

∂t
=v2

b
∂2u

∂x2
−v2

f
∂P

∂x
, (38)

345

λf
∂2u

∂t2
+W + τ

∂W

∂t
=−D

∂P

∂x
, (39)346

γ1
∂2u

∂x ∂t
+γ2

∂P

∂t
=−∂W

∂x
, (40)347

where348

λf =�f
κ

η
(41)

349

is the “kinematic” mobility of the fluid, and350

γ1 =1+ (1−φ)
βgs

β
and γ2 =1+ (1−φ)

βgf

φβf
. (42)

351

Coefficient λf has the dimension of time. Assumptions 22 imply that both352
dimensionless coefficients γ1 and γ2 are close to one. The system of Equa-353
tions (38)–(40) is similar to Biot’s system, however it uses fluid pressure and354
Darcy velocity, that are more typical of filtration theory. System (38)–(40)355
admits a solution, which is the sum of slow and fast waves (Biot, 1956a).356
Asymptotic analysis of these waves is our next goal.357

A plane-wave solution to Equations (38)–(40) has the form358

u=Use
i(ωt−kx), W =Wfe

i(ωt−kx), P =P0e
i(ωt−kx). (43)359

Substitution of Equation (43) into (38)–(40) and some algebra yield360

Wf =−iωγ1Us +ωγ2
P0

k
(44)361

or362

Wf = iω(−γ1 +γ2ξ)Us =v

(
−γ1

ξ
+γ2

)
P0, (45)

363

where364

v = ω

k
and ξ =− iP0

kUs
(46)

365
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Denote366

τD = D

v2
f

= κ�b

η
, γv = v2

b

v2
f

= φβf

β
and γ� = �f

�b
(47)

367

The parameters γv and γ� are dimensionless. Taking into account Equa-368
tion 41369

λf =γ�τD. (48)370

The dimensionless relaxation time θ and dimensionless angular frequency371
ε are defined as372

θ = τ

τD
and ε = τDω. (49)

373

Using these definitions, we obtain the following quadratic equation with374
respect to ξ :375

(
γ2 + iε

(−γ2γ� + θγ2
))

ξ2 + (−γ1 +γ2γv + iε
[−1+γ1γ� + (γ� − θγ1)+ θγ2γv

])
ξ +376

+ (−γ1γv + iεγv(γ� − τγ1)
)=0. (50)377

If we assume the permeability κ ∼ 1 Darcy, that is κ ∼ 10−12 m2, the vis-378
cosity of the fluid η ∼ 1 cP = 10−3 Pa-s, and the bulk density of the rock379
�b ∼103 kg/m3, then τD ∼10−6 and ε �10−3 for frequencies ω not exceed-380
ing ∼1 kHz. Since γ1 and γ2 are of the order of unity, ε (more accurately,381
iε) is a small parameter in Equation (50). At ε=0, there are two real roots382

ξ
(1)

0 = γ1

γ2
and ξ

(2)

0 =−γv. (51)
383

By virtue of Equations (21) and (42), the absolute value of the first root384
ξ 1

0 is close to unity, whereas the absolute value of the second one is equal385
to φβf/β, that is usually larger than one. We obtain two real asymptotic386
values for the complex velocity v387

v
(1)

0 =0 and v
(2)

0 =vf

√
γv + γ1

γ2
. (52)

388

The first solution corresponds to the slow wave, whereas the second one is389
related to the fast wave.390

The exact solution to Equation (50) is cumbersome and nontransparent.391
Therefore, we obtain an asymptotic solution directly from Equation (50) in392
the form393

ξ = ξ0 + ξ1iε − ξ2ε
2 . . . (53)394
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Using the notations395

A0 = γ2 A1 = −γ2γ� + θγ2,

B0 = γ2γv −γ1 B1 = −1+γ�(1+γ1)+ θ(γ2γv −γ1),

C0 = −γ1γv C1 = γv(γ� − θγ1),

(54)

396

we obtain397

ξ1 =−A1ξ
2
0 +B1ξ0 +C1

2A0ξ0 +B0
. (55)

398

Thus, the solutions corresponding to the slow and fast waves have, respec-399
tively, the following forms400

ξ
(1)

1 =γv

1−γ�(γ2γv +γ1)

γ1 +γ2γv

(56)
401

and402

ξ
(2)

1 = 1
γ2

γ1 −γ�(γ2γv +γ1)

γ1 +γ2γv

. (57)
403

Note, that since both γ1 ≈1 and γ2 ≈1, Equations (56) and (57) can be sim-404
plified405

ξ
(1)

1 =γv

1−γ�γv −γ�

1+γv

, (58)
406

ξ
(2)

1 = 1
γ2

γ1 −γ�γv −γ�

1+γv

. (59)
407

In particular, ξ
(1)

1 and ξ
(2)

1 are independent of the permeability of the for-408
mation and the viscosity of the fluid. Note that the relaxation time also409
disappears from the first-order approximation of ξ for both the slow and410
fast wave. The latter circumstance is discussed in Section 7 below.411

We further obtain that412

v(1) =±vb

√
iε

γ1 +γ2γv

+· · · (60)
413

and414

v(2) =±vf

√
γv + γ1

γ2
+vfV1iε +· · · , (61)

415



U
nc

or
re

ct
ed

 P
ro

of

14 D. B. SILIN ET AL.

where V1 is the first coefficient of the expansion of V in the powers of iε.416
The last two equations, in a combination with equation (56), imply that417

k(1) =± 1
τDvb

√
γ1 +γ2γv

√−iε +· · · , (62)
418

k(2) =± 1
τDvf

1√
γv + γ1

γ2

ε +· · · (63)

419

The imaginary part of k must be negative. Therefore, from (62), we infer420
that421

k(1) = 1
τDvb

√
γ1 +γ2γv

1− i√
2

√
ε +· · · (64)

422

and, respectively,423

v(1) =vb

√
1

γ1 +γ2γv

1+ i√
2

√
ε +· · · (65)

424

By virtue of Equations (51) and (45)425

Wf =−iω(γ1 −γ2ξ)Us. (66)426

Furthermore, using Equations (53), we get for the fast wave427

W fast
f =−εωγ2ξ

(2)

1 U fast
s +· · · (67)428

The right-hand side of the last equation is first-order small with respect429
to ε. In other words, at low-frequencies, the fast wave is almost a coher-430
ent oscillation of the skeleton and the fluid. At the same time, for the slow431
wave, the Darcy velocity amplitude is comparable with the amplitude of the432
time-derivative of the displacement433

W slow
f =−iω (γ1 +γ2γv)U slow

s +· · · (68)434

5. Reflection: Boundary Conditions435

Consider a normal incidence of a compressional elastic wave upon a plane436
interface x = 0 separating media M1 and M2 occupying half-spaces x < 0437
and x > 0, respectively, see Figure 1. Medium M1 is ideal elastic solid,438
whereas medium M2 is poroelastic fluid-saturated medium. The elastic
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Figure 1. One-dimensional propagation of a low-frequency disturbance perpendicu-
lar to the impermeable interface between medium M1 and porous, permeable solid
M2 fully saturated with a liquid.

properties of M1 and solid skeleton of M2 are characterized by the bulk439
densities �i and the speeds of sound vi , i = 1,2. We assume that the440
permeability of medium M2 is κ and the boundary between the media is441
impermeable to fluid flow. To calculate the reflection coefficient, boundary442
conditions at the interface between the media, i.e., at x =0, must be formu-443
lated.444

Under the assumptions of Section 3, and neglecting the heterogeneities445
of the materials, we can assume that the displacements of the solid parti-446
cles composing the media are parallel to x, and so is the flux of the fluid in447
the pore space. There is an important difference between the fluid and solid448
motion. The solid particles move more or less coherently near the respec-449
tive equilibrium positions, whereas fluid particles move in a much more dis-450
persed manner caused by the complexity of the pore space geometry. Only451
the mean volumetric flux or Darcy velocity of the moving fluid is parallel452
to x. This quantity is the result of averaging the microscopic fluid velocity453
field over a representative volume. In the case under consideration, such an454
averaging can be performed over a plane x =Const.>0.455

Denote by u1 and u2 the displacements of the solid particles in media456
M1 and M2, respectively.457
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First, the continuity of the displacements and microscopic stresses458
requires that459

u1|x=0 = u2|x=0 , (69)460

− 1
β 1

∂u1

∂x

∣∣∣∣
x=0

= − 1
β2

∂u2

∂x

∣∣∣∣
x=0

+ φp|x=0 . (70)
461

Here we use the fact that the area of the contact between medium M1 and462
the fluid saturating medium M2 is a part of the total area proportional to463
the porosity of medium M2.464

Zero fluid flux through the boundary implies465

Wf |x=0 =0. (71)466

Boundary conditions (69)–(71) will be used in the next section for investi-467
gation of the reflection coefficient.468

6. Reflection Coefficient469

To calculate the reflection coefficient, we substitute in boundary condi-470
tions (69)–(71) the sum of incident and reflected displacements in medium471
M1472

u1 =U1e
i(ωt−k1x) +RU1e

i(ωt+k1x) (72)473

and the sum of slow and fast waves transmitted into medium M2 expressed474
in terms of the fluid pressure and Darcy velocity variations475

p = 1
φβf

P s
0ei(ωt−ksx) + 1

φβf
P f

0 ei(ωt−kf x), (73)
476

u2 =U s
2e

i(ωt−ksx) +U f
2ei(ωt−kf x). (74)477

Utilizing the first Equation (45), we obtain478

(1+R)U1 = U s
2 + U f

2 ,

ik1

β1
(1−R)U1 = iks

2

β2
U s

2 + ikf
2

β2
U f

2

+ P f
0 +P s

0

βf

0 = iω(−γ1 +γ2ξ
s)U s

2 + iω(−γ1 +γ2ξ
f )U f

2 .

(75)

479



U
nc

or
re

ct
ed

 P
ro

of

LOW-FREQUENCY ASYMPTOTIC ANALYSIS 17

Further, by virtue of Equation 46, we get480

−(1+R)U1 + U s
2 + U f

2 = 0,

− k1

β1
(1−R)U1 + ks

2

(
1
β2

+ ξ s

βf

)
U s

2 + kf
2

(
1
β2

+ ξ f

βf

)
U f

2 = 0,

(γ1 −γ2ξ
s)U s

2 + (γ1 −γ2ξ
f )U f

2 = 0.

(76)

481

We assume zero attenuation in medium M1, therefore k1 > 0 is real and482
ωk1 = v1 is the p-wave velocity in this medium. Note that v1 is a charac-483
teristic of the medium M1, which does not depend on the frequency.484

Dividing through by U1 and putting Z1 =R, Z2 =U s
2/U1, and Z3 =U f

2/U1,485
we obtain the following system of equations486

−Z1 + Z2 + Z3 = 1,

ωZ1 + v1k
s
2

(
β1

β2
+ ξ s β1

βf

)
Z2 + v1k

f
2

(
β1

β2
+ ξ f β1

βf

)
Z3 = ω,

(γ1 −γ2ξ
s)Z2 + (γ1 −γ2ξ

f )Z3 = 0.

(77)

487

Hence, using Equations (63) and (62) and notation (49), the system of488
equations (77) can be presented in the following asymptotic form489

−Z1 + Z2 + Z3 = 1,

√
εZ1 + A22Z2 + A23

√
εZ3 = √

ε,

(A
(1)

32 +A
(2)

32 iε)Z2 + A33iεZ3 = 0.

(78)

490

The expressions for the coefficients Aij can be obtained from the asymp-491
totic formulae (53), (56), (57), (63), and (64):492

A22 = v1

vb

√
γ1 +γ2γv γs

1− i√
2

, (79)
493

A23 = v1

vf

√
γ2

γ1 +γ2γv

γf , (80)
494

A
(1)

32 =γ1 +γ2γv, (81)495

A
(2)

32 =−γ2γv

1−γ�(γ2γv +γ1)

γ1 +γ2γv

, (82)
496

A33 =−γ�γ1 −γ1 +γ�

γ1 +γ2γv

. (83)
497

Here we used the notations498

γs =β1

(
1
β2

−γv

1
βf

)
and γf =β1

(
1
β2

+ γ1

γ2

1
βf

)
. (84)

499
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From the last Equation (78)500

Z2 =− A33

A
(1)

32

iεZ3 +· · · (85)
501

This means that at low frequencies (i.e., at ε →0), the slow wave displace-502
ment is scaled with the velocity of fast displacement and, therefore, is one503
order of magnitude smaller. In other words, the slow part of the signal504
practically does not propagate and is mostly responsible for the reflection.505

Substitution of (85) into the first two Equations (78) yields506

−Z1 +
(

1− A33

A
(1)

32

iε

)
Z3 = 1,

√
εZ1 +

(
A23

√
ε −A22

A33

A
(1)

32

iε

)
Z3 = √

ε.

(86)

507

Cancelling the
√

ε in the second Equation (86) and dropping terms of the508
order higher than

√
ε, we obtain that509

Z3 =Z1 +1. (87)510

Consequently511

Z1 = 1−A23 +A22(A33/A
(1)

32 )i
√

ε

1+A23 −A22(A33/A
(1)

32 )i
√

ε
. (88)

512

Again, retaining only the terms of the order
√

ε, we finally obtain513

Z1 = 1−A23

1+A23
+

√
2
Ã22A33

A
(1)

32

1
(1+A23)2

(1+ i)
√

ε, (89)
514

where515

Ã22 = v1

vb

√
γ1 +γ2γv γs. (90)

516

Analysis of the expression (80) shows that in practical situations the517
coefficient A23 is greater than one. Therefore, the frequency-independent518
component of the reflection coefficient is negative. The frequency-depen-519
dent component of the reflection has the same sign as Ã33. The latter is520
positive if and only if521

γ� <
γ1

1+γ1
. (91)

522

The right-hand side of the last inequality is approximately equal to 0.5.523
Hence, roughly speaking, Ã33 is positive when the fluid density is at least524
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twice less than the bulk density of the saturated medium. In such a case the525
maximum of the absolute value of the reflection coefficient is attained at526
ε=0. At the same time, for dense fluids, the first-order term of the asymp-527
totic expansion, which is proportional to the square root of ε, may vanish528
and the first frequency-dependent term will be linear. In this case, the tor-529
tuosity coefficient becomes an important factor.530

In the original variables 47, Equation (89) takes on the form531

R = 1−A23

1+A23
+

√
2
Ã22A33

A
(1)

32

1
(1+A23)2

(1+ i)

√
κ�b

η
ω. (92)

532

Note that the last equation relates the reflectivity to the frequency through533
the factor of τD =κ�b/η having the dimension of time. It involves a prop-534
erty of the rock, the permeability coefficient, a property of the fluid, the535
viscosity, and a property of the coupled fluid–rock system, the bulk den-536
sity. The frequency scaling proposed here is similar to but not the same as537
the scaling introduced in Geertsma and Smit (1961).538

7. The Role of Relaxation Time and Tortuosity539

The asymptotic calculations presented above show that the dimensionless540
parameter θ , related to both relaxation time and tortuosity factor, disap-541
pears from the first-order terms. However, if θ is large, then some expan-542
sions obtained in Sections 4 and 6 must be reviewed. Practically, the range543
of frequencies is limited by the specifications of the available tools. There-544
fore, it may happen that within the range of frequencies available for anal-545
ysis the product θε is not negligibly small, and the passage to the limit as546
ε → 0 should be replaced with analysis at some intermediate finite values547
of ε. In such a case, the asymptotic analysis must be performed differently.548
In this section, we consider two examples of such analysis.549

First, let us assume that within the range of available frequencies, the550
parameter εθ is of the order of one. In the original variables, this condi-551
tion is equivalent to552

ω∼ 1
τ
. (93)553

Regrouping the coefficients in the Equation (50) and dividing through by554
1+ iθε, we obtain555

(A0 +Aθ
1iε)ξ

2 + (B0 +Bθ
1 iε)ξ +C0 +Cθ

1 iε =0, (94)556
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where the coefficients with zero indices are the same as those in Equation557
(54), and558

Aθ
1 = − γ2γ�

1+ iθε
,

Bθ
1 = −1+γ�(1+γ1)

1+ iθε
,

Cθ
1 = γvγ�

1+ iθε
.

(95)

559

Hence, the frequency-independent zero-terms of asymptotic expansions of560
the solutions ξ are the same as in Equation (51). To calculate the first-561
order coefficients, we note that formally the coefficients (95) are equal to562
the respective coefficients in Equations (54) evaluated at τ =0 and divided563
by 1 + iθε. This fact, in conjunction with the observation that the asymp-564
totic expansion of the reflection coefficient (92) does not depend on τ , sig-565
nificantly simplifies the calculations. Indeed, for the first-order coefficients566
of asymptotic expansion for ξ we can reuse Equations (56) and (57) if we567
put there τ = 0 and multiply the right-hand sides by an additional factor568
of 1/1+ iθε. Clearly, the calculations for the first-order terms of expan-569
sions of v and k can be carried out in a similar manner. The final result570
is that the reflection coefficient in the asymptotic expression (92) takes on571
the form572

R = 1−A23

1+A23
+2

A22A33

A
(1)

32

1
(1+A23)2

√
i − θε

√
κ�b

η
ω. (96)

573

Thus, if τω = O(1), the relaxation time and tortuosity affect both the574
amplitude and the phase shift of the reflected signal.575

Now, consider another extreme situation where θ � 1, so that after the576
division of Equation (50) by θ all terms with θ in the denominator can be577
neglected. We obtain a quadratic equation578

iε(A0ξ
2 +B0ξ +C0)=0. (97)579

The latter implies that the frequency dependence of ξ (and, therefore, of580
the reflection coefficient as well) vanishes. Therefore, at a very large relax-581
ation time (or, equivalently, at a very large tortuosity), the inertial term in582
Equation (39) makes the dissipation term on the right-hand side unimpor-583
tant. Consequently, the fluid-saturated medium acts as an elastic compos-584
ite medium and we arrive at a classical frequency-independent elastic wave585
reflection.586
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8. Conclusions587

Equations of elastic wave propagation in fluid-saturated porous media can588
be obtained from the basic principles of filtration theory. Under different589
assumptions, these equations reduce either to Biot’s poroelasticity model590
or to the pressure diffusion equation. Comparison between our derivation591
of poroelasticity equations and the original derivation by Biot shows that592
the tortuosity factor entering Biot’s equations is proportional to the relaxa-593
tion time from the dynamic version of Darcy’s law. This result can be used594
to evaluate the tortuosity factor from a macroscopic flow experiment or595
microscopic-scale flow modeling (Patzek, 2001).596

While, due to the high attenuation, slow poroelastic waves are rarely597
observed in practice, they significantly impact reflection–refraction pro-598
cesses making these processes frequency-dependent. This frequency depen-599
dence, in turn, affects both the amplitude and the phase of the reflected600
wave.601

The low-frequency asymptotic behavior of the reflection of a plane seis-602
mic wave from an interface between an elastic medium and fluid-saturated603
porous medium has been investigated. In case of moderate tortuosity, the fre-604
quency-dependent component of the reflection coefficient is asymptotically605
proportional to the square root of the product of the reservoir fluid mobil-606
ity and the frequency. If the tortuosity is extremely large, the possibility of607
which was demonstrated in Molotkov (1999), this scaling changes. In such a608
case, the frequency-dependent component of the reflection coefficient is more609
complicated and includes an additional factor depending on the dimension-610
less product of the relaxation time and the frequency of the signal.611

The obtained results suggest that the nature of the frequency-depend-612
ence of the reflection coefficient is in viscous friction in fluid flow in the613
pore space, rather than in the contrast between the elastic properties of the614
overburden and reservoir rocks.615

The obtained asymptotic reflection signal scaling has been successfully616
applied for imaging the productivity of hydrocarbon reservoir (Korneev,617
1998).618
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